Logo Search packages:      
Sourcecode: mathpiper version File versions  Download package


/* {{{ License.
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or any later version.
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * GNU General Public License for more details.
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 */ //}}}

// :indentSize=4:lineSeparator=\n:noTabs=false:tabSize=4:folding=explicit:collapseFolds=0:

package org.mathpiper.builtin.functions.core;

import org.mathpiper.builtin.BigNumber;
import org.mathpiper.builtin.BuiltinFunction;
import org.mathpiper.lisp.Environment;
import org.mathpiper.lisp.Utility;

public class GetExactBits extends BuiltinFunction

    public void evaluate(Environment aEnvironment, int aStackTop) throws Exception
        BigNumber numberToCheck = org.mathpiper.lisp.Utility.getNumber(aEnvironment, aStackTop, 1);
        BigNumber numberToReturn = new BigNumber(aEnvironment.getPrecision());
                ? numberToCheck.bitCount() // for integers, return the bit count
                : Utility.digitsToBits((long) (numberToCheck.getPrecision()), 10) // for floats, return the getPrecision
        getTopOfStackPointer(aEnvironment, aStackTop).setCons(new org.mathpiper.lisp.cons.NumberCons(aEnvironment, numberToReturn));

%mathpiper_docs,name="GetExactBitsN",categories="Programmer Functions;Numerical (Arbitrary Precision);Built In"
*CMD GetExactBitsN --- manipulate precision of floating-point numbers

{x} -- an expression evaluating to a floating-point number

Each floating-point number in MathPiper has an internal precision counter that stores the number of exact bits in the mantissa.
The number of exact bits is automatically updated after each arithmetic operation to reflect the gain or loss of precision due to round-off.
The functions {GetExactBitsN} queries the precision flags of individual number objects.

{GetExactBitsN(x)} returns an integer number $n$ such that {x} represents a real number in the interval [$x*(1-2^(-n))$, $x*(1+2^(-n))$] if $x!=0$ and in the interval [$-2^(-n)$, $2^(-n)$] if $x=0$.
The integer $n$ is always nonnegative unless {x} is zero (a "floating zero").
A floating zero can have a negative value of the number $n$ of exact bits.

This function is only meaningful for floating-point numbers.
(All integers are always exact.)
For integer {x}, the function {GetExactBitsN} returns the bit count of {x}.

*REM FIXME - these examples currently do not work because of bugs

The default precision of 10 decimals corresponds to 33 bits:
      In> GetExactBitsN(1000.123)
      Out> 33;
      In> x:=SetExactBits(10., 20)
      Out> 10.;
      In> GetExactBitsN(x)
      Out> 20;
Prepare a "floating zero" representing an interval [-4, 4]:
      In> x:=SetExactBits(0., -2)
      Out> 0.;
      In> x=0
      Out> True;

*SEE BuiltinPrecisionSet, BuiltinPrecisionGet, SetExactBitsN

Generated by  Doxygen 1.6.0   Back to index